Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 458: 131975, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399722

RESUMO

The rate of decommissioning of global oil and gas production facilities will accelerate over coming decades, as mature developments reach the end of use, and consumers transition towards renewable energy. Decommissioning strategies should include thorough environmental risk assessments which consider contaminants which are known to be present in oil and gas systems. Mercury (Hg) is a global pollutant that occurs naturally in oil and gas reservoirs. However, knowledge of Hg contamination in transmission pipelines and process equipment is limited. We investigated the potential for accumulation of Hg0 within production facilities, particularly those transporting gases, by considering the deposition of Hg onto steel surfaces from the gas phase. Following incubation experiments in a Hg saturated atmosphere; fresh API 5L-X65 and L80-13Cr steels were found to adsorb 1.4 × 10-5 ± 0.04 × 10-5 and 1.1 × 10-5 ± 0.04 × 10-5 g m-2, respectively, while corroded samples of the same steels adsorbed 0.12 ± 0.01 and 0.83 ± 0.02 g m-2; an increase in adsorbed mercury by four orders of magnitude. The association between surface corrosion and Hg was demonstrated by laser ablation ICPMS. The levels of Hg measured on the corroded steel surfaces indicates a potential environmental risk; therefore, mercury speciation (including the presence of ß-HgS, not considered in this study), concentrations and cleaning methods should be considered when developing oil and gas decommissioning strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...